Studies on density functional theory for the electron-transfer reaction mechanism between M-C6H6 and M+-C6H6 complexes in the gas phase

Author(s):  
Zhengyu Zhou ◽  
Aiping Fu ◽  
Dongmei Du
Pteridines ◽  
2011 ◽  
Vol 22 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Hong-Fang Ji ◽  
Liang Shen

Abstract Pterins are widespread in biological systems and possess photosensitizing activities. In the present study, the photosensitization mechanism of acid form of pterin (PTA) and basic form of pterin (PTB) is investigated by means of density functional theory calculations. The reactive oxygen species-photogenerating pathways of the lowest triplet excited (T1) state PTA and PTB are proposed as follows. Through direct energy transfer, both T1 state PTA and PTB can photogenerate 1O2. Two possible O2 .−-generating pathways are proposed according to the electronic parameters of PTA and PTB: i) direct electron transfer from T1 state PTA and PTB to 3O2 and the electron transfer reaction is more favorable energetically for PTB in comparison with PTA; and ii) electron transfer from anion radical of PTA and PTB to 3O2.


2015 ◽  
Vol 17 (17) ◽  
pp. 11740-11751 ◽  
Author(s):  
Saeed Kazemiabnavi ◽  
Prashanta Dutta ◽  
Soumik Banerjee

Electron transfer reaction at the cathode–electrolyte interface in a lithium–air battery, whereby the oxygen molecule is reduced, is modeled and the reaction rates are correlated with the structure of the cation.


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18246-18251
Author(s):  
Selçuk Eşsiz

A computational study of metal-free cyanomethylation and cyclization of aryl alkynoates with acetonitrile is carried out employing density functional theory and high-level coupled-cluster methods, such as [CCSD(T)].


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1663
Author(s):  
Laixing Luo ◽  
Xing Zheng ◽  
Jianye Wang ◽  
Wu Qin ◽  
Xianbin Xiao ◽  
...  

Biomass chemical looping gasification (CLG) is a novel gasification technology for hydrogen production, where the oxygen carrier (OC) transfers lattice oxygen to catalytically oxidize fuel into syngas. However, the OC is gradually reduced, showing different reaction activities in the CLG process. Fully understanding the CLG reaction mechanism of fuel molecules on perfect and reduced OC surfaces is necessary, for which the CLG of ethanol using Fe2O3 as the OC was introduced as the probe reaction to perform density functional theory calculations to reveal the decomposition mechanism of ethanol into the synthesis gas (including H2, CH4, ethylene, formaldehyde, acetaldehyde, and CO) on perfect and reduced Fe2O3(001) surfaces. When Fe2O3(001) is reduced to FeO0.375(001), the calculated barrier energy decreases and then increases again, suggesting that the reduction state around FeO(001) favors the catalytic decomposition of ethanol to produce hydrogen, which proves that the degree of reduction has an important effect on the CLG reaction.


2021 ◽  
pp. 014459872199495
Author(s):  
Songjian Du ◽  
Tingting Li ◽  
Xinwei Wang ◽  
Liqiang Zhang ◽  
Zhengda Yang ◽  
...  

Hydrodesulfurization reaction, as the last step of hydrothermal cracking reaction, is of great significance for the reduction of viscosity and desulfurization of heavy oil. Based on Density Functional Theory and using Dmol3 module of Materials Studio, this research simulated the adsorption and hydrodesulfurization of thiophene on Ni2P (001) surface, and discussed the hydrodesulfurization reaction mechanism of thiophene on Ni2P (001) surface. It was found that the direct hydrodesulfurization of thiophene had more advantages than the indirect hydrodesulfurization of thiophene. Finally, the optimal reaction path was determined: C4H4S+H2→C4H6.


Author(s):  
Houyu Zhu ◽  
Xin Li ◽  
Naiyou Shi ◽  
Xuefei Ding ◽  
Zehua Yu ◽  
...  

Ni/ZnO catalysts have been well recognized by industry and academia for exhibiting excellent desulfurization activities. However, intrinsic reaction mechanism on Ni active center is still obscure. Herein, we performed periodic...


Sign in / Sign up

Export Citation Format

Share Document